Contents lists available at ScienceDirect

### Journal of Power Sources



journal homepage: www.elsevier.com/locate/jpowsour

Short communication

### One-compartment electrochemical H<sub>2</sub> generator from borohydride

#### Shin-ichi Yamazaki\*, Kentaro Kuratani, Hiroshi Senoh, Zyun Siroma, Kazuaki Yasuda

Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

#### ARTICLE INFO

Article history: Received 19 June 2009 Received in revised form 18 August 2009 Accepted 18 August 2009 Available online 27 August 2009

Keywords: Borohydride Hydrogen Electrochemical regulation Ruthenium oxide Rhodium porphyrin

#### ABSTRACT

A one-compartment membrane-less electrochemical  $H_2$  generator from borohydride was realized using a Rh porphyrin and RuO<sub>2</sub> as the anode and cathode, respectively.  $H_2$  generation from this cell was successfully controlled electrochemically by varying the potential applied. The regulation of  $H_2$  generation was based on the selectivity of the anode and cathode. We found that RuO<sub>2</sub> exhibits  $H_2O$  electro-reduction activity without electro-oxidation or chemical decomposition of borohydride, and used the catalyst as a selective cathode in the electrochemical  $H_2$  generator. Anode and cathode potentials of the electrochemical  $H_2$  generator were discussed in terms of the catalytic activities of a Rh porphyrin and RuO<sub>2</sub>.

© 2009 Elsevier B.V. All rights reserved.

#### 1. Introduction

Chemical hydrides such as borohydride  $(BH_4^-)$  have attracted considerable interest due to their high energy density [1,2]. The rapid, safe, and controllable generation of H<sub>2</sub> from these hydrogenstorage materials is very important for their use in ubiquitous energy devices. For this purpose, a wide variety of studies on catalysts and systems for H<sub>2</sub> generation have been performed [3–5].

Recently, Senoh et al. presented a new electrochemical  $H_2$  generator from  $BH_4^-$  [6]. In the cell,  $H_2$  generation from  $BH_4^-$  is separated into the following anode ( $BH_4^-$  electro-oxidation) and cathode ( $H_2O$  electro-reduction) reactions:

Anode:  $BH_4^- + 8OH^- \rightarrow BO_2^- + 6H_2O + 8e^-$  (1)

Cathode: 
$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$
 (2)

A Pt or a Au catalyst was used for anode catalysts, and a Pt catalysts was used for cathode catalysts. In this electrochemical system, the rate of  $H_2$  generation could be controlled by varying current applied. In their study [6], they successfully controlled  $H_2$  generation to some extent.

However, two points should be addressed to improve this  $H_2$  generator. One is a problem with electrocatalysts. Conventional electrocatalysts (Pt, Au, etc.) are not the most suitable materials. When a Pt catalyst is used, uncontrollable  $H_2$  generation occurs

\* Corresponding author. Fax: +81 72 751 9629.

E-mail address: s-yamazaki@aist.go.jp (S. Yamazaki).

due to the chemical decomposition of  $BH_4^-$  (Eq. (3)):

$$BH_4^- + 2H_2O \to 4H_2 + BO_2^-$$
(3)

Furthermore, a Pt anode catalyzes  $H_2O$  electro-reduction. This indicates that the reactions (Eq. (1)) and (Eq. (2)) occur on the same electrode. The overall reaction is also a decomposition of  $BH_4^-$  (Eq. (3)). When a Au catalyst is used as an anode catalyst, uncontrollable  $H_2$  generation can be suppressed, however, the catalyst requires large overpotentials. The other is a problem of separation between anode and cathode compartments. A cathode Pt catalyst reacts with  $BH_4^-$ . The reaction of  $BH_4^-$  with a cathode catalyst (crossover reaction) results in the decrease of cathode potential. The cathode must be strictly separated from the anode to prevent access of  $BH_4^-$ . However, few electrolyte membranes are appropriate for separating the anode from the cathode.

In order to counteract these two problems, we have sought *selective* anode and cathode catalysts with high activity. In our previous study [7], we developed a new anode catalyst for  $BH_4^-$  electrooxidation using rhodium porphyrins. This catalyst can oxidize  $BH_4^$ at low potentials without the chemical decomposition of  $BH_4^-$  or  $H_2O$  electro-reduction; this catalyst is selective for anode reaction. These properties counteract the problems with anode catalysts.

If we could find a selective cathode catalyst that can catalyze  $H_2O$  electro-reduction at low overpotentials without reacting with  $BH_4^-$ , it would not be necessary to separate the anode and cathode. A one-compartment structure would drastically simplify the structure of the  $H_2$  generator, and eliminate the problems regarding the crossover of  $BH_4^-$ .

This situation encouraged us to search a selective cathode catalyst for H<sub>2</sub>O reduction in an electrochemical H<sub>2</sub> generator. Pt-based



<sup>0378-7753/\$ -</sup> see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2009.08.057



Scheme 1. One-compartment electrochemical H<sub>2</sub> generator.

catalysts, which are usually used for  $H_2O$  reduction, are unsuitable because it reacts with  $BH_4^-$  dramatically. We paid special attention to ruthenium dioxide ( $RuO_2$ ). It was reported that  $RuO_2$  has electrochemical  $H_2O$  reduction activity in basic solution [8–12]. In contrast to Pt-based catalysts,  $RuO_2$  exhibits little activity for  $H_2$  oxidation [12].  $RuO_2$  might have high selectivity toward  $H_2O$  reduction. This idea raises the expectation that  $RuO_2$  can catalyze  $H_2O$  reduction without reacting with  $BH_4^-$ .

In the present study, we developed a one-compartment electrochemical  $H_2$  generator. This cell requires the application of some voltage, but voltage needed for significant  $H_2$  generation is low. The generation of  $H_2$  from  $BH_4^-$  could be successfully controlled by potential applied. The concept and structure of this cell are shown in Scheme 1. This cell is based on the selectivity of anode (a Rh porphyrin catalyst) and cathode (a RuO<sub>2</sub> catalyst). We found that certain kinds of RuO<sub>2</sub> have virtually no catalytic activity toward chemical decomposition of 10 mM  $BH_4^-$ , even though it exhibited strong electrochemical  $H_2$  generation ( $H_2O$  reduction) activity. The electrochemical  $BH_4^-$  oxidation activity by the RuO<sub>2</sub> was much smaller than the  $H_2O$  electro-reduction activity. This catalyst as well as a Rh porphyrin catalyst enables us to construct an electrochemically controllable one-compartment  $H_2$  generator.

#### 2. Materials and methods

#### 2.1. Materials

Commercially available anhydrous  $RuO_2$  was purchased from Wako. Amorphous  $RuO_2$  was prepared as described in the literature [13]. Sodium borohydride was purchased from Kishida Chemical. Rh(III) octaethylporphyrin chloride ([Rh<sup>III</sup>(OEP)]Cl) was synthesized by the reflux of Rh<sub>2</sub>Cl<sub>2</sub>(CO)<sub>4</sub> and octaethylporphine [14,15]. Carbon-supported Rh(OEP) (Rh(OEP)/C) was prepared by depositing [Rh(OEP)]Cl on carbon black with an equilibrium adsorption method, as described in Refs. [7,15].

#### 2.2. Modification of glassy carbon (GC) electrodes

Five milligrams of RuO<sub>2</sub> or Rh(OEP)/C were suspended in a mixed solvent (0.5 mL, ethanol:water = 1:1) containing 5  $\mu$ L Nafion (5% solution, Aldrich). The aliquot (2  $\mu$ L) of this suspension was mounted on a glassy carbon electrode (A = 0.0707 cm<sup>2</sup>) and dried at room temperature. The experimental details are shown in Refs. [7,15].

#### 2.3. Measurement of voltammograms

All electrochemical measurements were performed using an ALS electrochemical analyzer. Voltammograms of  $RuO_2$  and Rh(OEP)/C were measured in a three-electrode system. The modified glassy carbon electrodes were used as working electrodes. A Ag|AgCl|KCl(sat.) electrode and a platinum coil electrode were used as a reference and a counter electrodes, respectively. All potentials were referred to RHE. Voltammograms of an electrochemical H<sub>2</sub> generator were measured in a two-electrode system. The Rh(OEP)/C-modified electrode was used as a working electrode, and the  $RuO_2$ -modified electrode was used as a reference (counter) electrode. All voltammograms were recorded at a scan rate of 10 mV s<sup>-1</sup> in deaerated 0.1 M NaOH solution.

## 2.4. Measurement of $H_2$ generation from a one-compartment electrochemical cell

The experiment was performed using the electrochemical cell shown in Scheme 1. A RuO<sub>2</sub>-modified GC electrode was used as a cathode, and a Rh(OEP)-modified GC electrode was used as an anode. An aliquot  $(100 \,\mu\text{L})$  of catalyst suspension described above was mounted on both sides of a GC plate  $(1.5 \text{ cm} \times 1.5 \text{ cm})$  (total amount 200 µL), and dried at room temperature [7]. The electrodes were immersed in 0.1 M NaOH solution containing 10 mM NaBH<sub>4</sub>. The cell was purged with argon gas and sealed with a silicone plug to prevent gas exchange. After the immersion at room temperature, the gas phase above the solution was examined to determine the H<sub>2</sub> concentration by gas chromatography. The gas phase was again purged with argon gas. After the electrolysis for at room temperature, the gas phase was analyzed again. The applied voltage denotes anode (Rh(OEP)/C) potential vs. cathode (RuO<sub>2</sub>) potential. The charge transferred during electrolysis was recorded. H<sub>2</sub> generation from only RuO<sub>2</sub> was measured by the same method.

## 2.5. Measurement of anode and cathode potentials of the $H_2$ generator

Ag|AgCl|KCl(sat.) electrodes were immersed in the electrochemical  $H_2$  generator, and the potential difference between Ag|AgCl|KCl(sat.) and anode was measured by a potentiometer under the operation of the  $H_2$  generator. The potential difference between Ag|AgCl|KCl(sat.) and cathode was measured by the same method. The potential differences were referred to RHE.

#### 3. Results and discussion

# 3.1. Electrochemical reactivities of $RuO_2$ toward $H_2O$ reduction and $BH_4^-$ oxidation

Fig. 1 shows cyclic voltammograms of an anhydrous  $RuO_2$  (Wako).  $RuO_2$  exhibited strong  $H_2O$  reduction activity below 0 V. Although this catalyst did not give as high an activity as Pt catalyst, the onset potential of  $RuO_2$  for  $H_2$  generation was close to 0 V (vs. RHE). Upon the addition of 1 mM BH<sub>4</sub><sup>-</sup>, the oxidation current increased slightly (Fig. 1A, line b). However, the current increase was much lower than the  $H_2O$  reduction current even under electrode-rotation conditions (Fig. 1A, line c). In particular, at low potentials (below 0.25 V vs. RHE), the BH<sub>4</sub><sup>-</sup> oxidation current can be neglected. Even when BH<sub>4</sub><sup>-</sup> concentration was increased to 10 mM, the BH<sub>4</sub><sup>-</sup> oxidation current did not increase significantly (Fig. 1B, lines b and c), and remained much lower than H<sub>2</sub>O reduction current.

In contrast, Pt cathode catalysts, which are most often used for electrochemical  $H_2$  generation, have strong  $BH_4^-$  electro-oxidation activity [7]. The electro-oxidation of crossover  $BH_4^-$  by cathode Pt



**Fig. 1.** (A) Voltammograms of commercially available  $RuO_2$  in 0.1 M NaOH solution (a) in the absence of  $BH_4^-$ , (b) in the presence of  $1 \text{ mM BH}_4^-$ , and (c) in the presence of  $1 \text{ mM BH}_4^-$ , with electrode rotation (3600 rpm). (B) Voltammograms of commercially available  $RuO_2$  in 0.1 M NaOH solution (a) in the absence of  $BH_4^-$ , (b) in the presence of  $10 \text{ mM BH}_4^-$ , and (c) in the presence of  $10 \text{ mM BH}_4^-$ , and (c) in the presence of  $10 \text{ mM BH}_4^-$ , and (c) in the presence of  $10 \text{ mM BH}_4^-$ , and (c) in the presence of  $10 \text{ mM BH}_4^-$ , and (c) in the presence of  $10 \text{ mM BH}_4^-$ , and (c) in the presence of  $10 \text{ mM BH}_4^-$ , and (c) in the presence of  $10 \text{ mM BH}_4^-$  and (c) in the presence of  $10 \text{ mM BH}_4^-$  and (c) in the presence of  $10 \text{ mM BH}_4^-$  and (c) in the presence of  $10 \text{ mM BH}_4^-$  and (c) in the presence of  $10 \text{ mM BH}_4^-$  and (c) in the presence of  $10 \text{ mM BH}_4^-$  and (c) in the presence of  $10 \text{ mM BH}_4^-$  and (c) in the presence of  $10 \text{ mM BH}_4^-$  and (c) in the presence of  $10 \text{ mM BH}_4^-$  and (c) in the presence of  $10 \text{ mM SH}_4^-$  and (c) in the presence of  $10 \text{ mM SH}_4^-$  and (c) in the presence of  $10 \text{ mM SH}_4^-$  and (c) in the presence of  $10 \text{ mV s}^{-1}$  at 25 °C.

catalysts is a significant problem in the cell using  $BH_4^-$  as a fuel. A lack of  $BH_4^-$  electro-oxidation activity is an important property that is needed to construct a one-compartment  $H_2$  generator mentioned above.

#### 3.2. Chemical decomposition of $BH_4^-$ by $RuO_2$

Since the chemical decomposition of  $BH_4^-$  by electrocatalysts results in the uncontrollable generation of  $H_2$ , the reactivity of  $RuO_2$ toward  $BH_4^-$  under open circuit conditions was examined. Few  $H_2$ bubbles were generated when the  $RuO_2$  electrode was soaked in the  $BH_4^-$  solution (10 mM in 0.1 M NaOH), in contrast to Pt catalyst, which generated abundant bubbles immediately after the immersion into  $BH_4^-$  solution. The results of a gas chromatography analysis gave a quantitative basis for this observation.  $H_2$ generation from a  $RuO_2$ -modified electrode through the chemical decomposition of  $BH_4^-$  was only 1.8 nmol min<sup>-1</sup>, while that from a carbon-supported Pt catalyst was 5525 nmol min<sup>-1</sup> (taken from Ref. [7]). Thus,  $RuO_2$  exhibited virtually no activity for the chemical decomposition of  $BH_4^-$ . This property would also be desirable for cathode catalysts in a controllable  $H_2$  generator.

# 3.3. Electrochemical reactivities of amorphous $RuO_2$ toward $H_2O$ reduction and $BH_4^-$ oxidation

The electrochemical activity of other RuO<sub>2</sub> that have an amorphous structure was also tested. Fig. 2 shows voltammograms for an amorphous RuO<sub>2</sub>-modified electrode. Although amorphous

 $RuO_2$  exhibited  $H_2O$  reduction activity, it exhibited stronger electro-oxidation activity toward 1 mM BH<sub>4</sub><sup>-</sup>(Fig. 2A, line c). The increase in the BH<sub>4</sub><sup>-</sup> concentration from 1 mM to 10 mM drastically increased the BH<sub>4</sub><sup>-</sup> oxidation current at low potentials. The ratio of BH<sub>4</sub><sup>-</sup> electro-oxidation/H<sub>2</sub>O electro-reduction strongly depended on RuO<sub>2</sub> used, and was much higher in amorphous RuO<sub>2</sub>. This relatively higher BH<sub>4</sub><sup>-</sup> electro-oxidation activity might be unfavourable for its use as a cathode catalyst in the electrochemical H<sub>2</sub> generator. Thus, RuO<sub>2</sub> (Wako) was used in the following experiments.

#### 3.4. The reactivity of Rh(OEP) toward $10 \text{ mM BH}_4^-$

We previously found that carbon-supported Rh octaethylporphyrin (Rh(OEP)/C) could act as a catalyst for BH<sub>4</sub><sup>-</sup> electrooxidation without promoting H<sub>2</sub>O reduction or BH<sub>4</sub><sup>-</sup> chemical decomposition. [7]. However, the electrochemical reactivity toward high-concentration BH<sub>4</sub><sup>-</sup> (>10 mM), which is used in H<sub>2</sub> generators, remains to be clarified. In this study, the electrochemical oxidation of 10 mM BH<sub>4</sub><sup>-</sup> by Rh(OEP)/C was examined by voltammetry.

The results are shown in voltammograms of Fig. 3. On the addition of 10 mM  $BH_4^-$ , the oxidation current increased drastically (Fig. 3, lines b and c). Under electrode rotation condition (3600 rpm), it exceeded 70 mA cm<sup>-2</sup> (Fig. 3, line c). The H<sub>2</sub>O reduction current was virtually zero in the presence of 10 mM  $BH_4^-$ . This property exhibits marked contrast to that with RuO<sub>2</sub> (Wako), which catalyzes only H<sub>2</sub>O electro-reduction without catalyzing



**Fig. 2.** (A) Voltammograms of amorphous RuO<sub>2</sub> in 0.1 M NaOH solution (a) in the absence of  $BH_4^-$ , (b) in the presence of  $1 \text{ mM BH}_4^-$ , and (c) in the presence of  $1 \text{ mM BH}_4^-$  with electrode rotation (3600 rpm). (B) Voltammograms of amorphous RuO<sub>2</sub> in 0.1 M NaOH solution (a) in the absence of  $BH_4^-$ , (b) in the presence of  $10 \text{ mM BH}_4^-$ , and (c) in the presence of  $10 \text{ mM BH}_4^-$ , with electrode rotation (3600 rpm). The voltammograms were recorded at a scan rate of  $10 \text{ mV s}^{-1}$  at 25 °C.



**Fig. 3.** Voltammograms of Rh(OEP)/C in 0.1 M NaOH solution (a) in the absence of BH<sub>4</sub><sup>-</sup>, (b) in the presence of 10 mM BH<sub>4</sub><sup>-</sup>, and (c) in the presence of 10 mM BH<sub>4</sub><sup>-</sup> with electrode rotation (3600 rpm). The voltammograms were recorded at a scan rate of 10 mV s<sup>-1</sup> at 25 °C.

 $BH_4^-$  electro-oxidation. Thus, Rh(OEP)/C meets the requirements as a selective anode catalyst in the one-compartment electrochemical  $H_2$  generator.

Electrode rotation drastically enhanced the oxidation current (Fig. 3), indicating that mass transfer of  $BH_4^-$  is involved in the determination of the reaction rate. However, the reaction is limited not only by the diffusion but also by the  $BH_4^-$  oxidation. The oxidation current did not give steady-state current (Fig. 3, line c), while the diffusion-controlled steady-state current was observed for the electro-oxidation of 1 mM  $BH_4^-$  [7]. This indicates that  $BH_4^-$  oxidation rate at a high  $BH_4^-$  concentration (10 mM).

### 3.5. The regulation of $H_2$ generation from a one-compartment electrochemical cell using RuO<sub>2</sub> cathode and Rh porphyrin anode

The results above revealed that Rh(OEP)/C can catalyze the electro-oxidation of  $BH_4^-$  (Eq. (1)) without promoting the electro-reduction of  $H_2O$  (Eq. (2)), and that  $RuO_2$  (Wako) can catalyze the electro-reduction of  $H_2O$  without promoting the electro-oxidation of  $BH_4^-$ . Both electrocatalysts are virtually inactive toward chemical decomposition of  $BH_4^-$ . When the Rh porphyrin catalyst is used as an anode catalyst and the  $RuO_2$  catalyst is used as a cathode catalyst, a one-compartment electrochemical  $H_2$  generator can be realized (Scheme 1). Because this cell is based on their selectivity, no membrane or separator is needed. The generation of  $H_2$  from this cell with and without potential application was examined by gas chromatography.

Under open circuit conditions, the rate of  $H_2$  generation from the cell was 3.7 nmol min<sup>-1</sup>. Thus, the generation of  $H_2$  from the chemical decomposition of  $BH_4^-$  was successfully suppressed. Since the rate of  $H_2$  generation with RuO<sub>2</sub> was 1.8 nmol min<sup>-1</sup>, as mentioned above, about half of  $H_2$  generation under open circuit conditions should be due to Rh(OEP) catalyst.

The increase in the applied voltage (anode vs. cathode) enhanced the rate of  $H_2$  generation drastically. Fig. 4 plot (a) indicates the relationship between  $H_2$  generation rates and applied voltages. The rates of  $H_2$  generation at 0.2 and 0.3 V were ca. 18 times and 54 times higher than that under open circuit conditions, respectively. Above 0.3 V, the ratio exceeds 50, indicating that  $H_2$  generation was almost completely ascribed to the electrochemical reaction (Eqs. (1) and (2)). This ratio indicates that the electrochem-



**Fig. 4.** H<sub>2</sub> generation rates from the one-compartment H<sub>2</sub> generating cell and the current density of the cell. An applied voltage is defined as the potential of anode vs. cathode. A solution of NaOH (0.1 M) containing BH<sub>4</sub><sup>-</sup> (10 mM) was used as an electrolyte solution. The electrochemical H<sub>2</sub> generator was operated at 25 °C.

ical regulation of H<sub>2</sub> generation was successfully achieved in the low potential regions.

The total amount of H<sub>2</sub> generated (11.9  $\mu$ mol) did not reach half as high as the amount of electrons transferred (31.6  $\mu$ mol, 3.05 C) at 0.3 V. The residue should be attributed to the charge storage at electrolyte/RuO<sub>2</sub> interface and the redox reaction of Ru in RuO<sub>2</sub>. H<sub>2</sub> leakage from the cell might be partly responsible for the residue.

Steady-state current densities were measured and also shown in Fig. 4 (plot b). The magnitude of current increased with the increase in potential. The trend coincides with that of  $H_2$  generation rates. The coincidence also indicates that almost all the  $H_2$  generation was caused by the electrochemical reaction. A cyclic voltammogram of this electrochemical cell was also measured. The result (Fig. 5) was similar to that of the plot (b) in Fig. 4.

This  $H_2$  generator has a drawback in that it requires potential application from an external power supply. This might not only complicate  $H_2$  generation systems but also cause a loss of energy. However, the onset potential of the cyclic voltammograms of Fig. 5 was as low as 0.15 V, and significant  $H_2$  generation started to occur



**Fig. 5.** A cyclic voltammogram of the electrochemical H<sub>2</sub> generator (a) in the absence of BH<sub>4</sub><sup>-</sup> and (b) in the presence of 10 mM BH<sub>4</sub><sup>-</sup>. The Rh(OEP)/C-modified electrode was used as a working electrode, and the RuO<sub>2</sub>-modified electrode was used as a reference (counter) electrode. A solution of NaOH (0.1 M) was used as an electrolyte solution. The voltammogram was recorded at a scan rate of 10 mV s<sup>-1</sup> at 25 °C.



**Fig. 6.** Anode and cathode potentials of the electrochemical H<sub>2</sub> generator at several applied voltages. An applied voltage is defined as the potential of anode vs. cathode. The anode and cathode potentials were measured using Ag|AgCl|KCl(sat.) electrodes, and referred to RHE. A solution of NaOH (0.1 M) containing BH<sub>4</sub><sup>-</sup> (10 mM) was used as an electrolyte solution. The experiments were performed at 25 °C.

at 0.2 V; such potential regions are comparable to the anode potential in direct methanol fuel cells, and are much lower than the cathode ( $O_2$  reduction) potential in fuel cells. Therefore, the potential loss might be acceptable.

# 3.6. Anode and cathode potentials of the electrochemical $H_2$ generator

To analyze the property of the electrochemical cell in detail, the potentials of anode (Rh(OEP)/C) and cathode ( $RuO_2$ ) were measured at several applied voltages in which significant amount of H<sub>2</sub> was generated. The results were shown in Fig. 6.

Anode and cathode potentials were determined to be ca. 0.15-0.4 V and ca. -0.05 to -0.3 V, respectively as shown in Fig. 6. The redox potentials of anode (Eq. (1)) and cathode (Eq. (2)) reactions are -0.4 and 0 V, respectively. Hence, the overpotential (|measured potential – redox potential|) of anode was as high as ca. 0.55 V, while that of cathode remained as low as 0.05 V at an applied voltage of 0.2 V. The overpotential of anode was higher than that of cathode in the potential regions; the anode catalysts should be mainly improved to decrease the applied voltage.

# 3.7. The interpretation of anode and cathode potentials in terms of behaviours of the electrocatalysts

The potentials of anode and cathode were discussed in terms of the electrochemical behaviours of anode and cathode catalysts. Fig. 3 shows that the oxidation current of Rh(OEP)/C remains virtually zero below 0.15 V, and drastically increased above 0.15 V. This behaviour coincides with the behaviour of anode potential. This overpotential up to 0.15 V would be attributed to the intrinsic activity of Rh(OEP). Fig. 3 also indicates that mass transfer of BH<sub>4</sub><sup>-</sup> affects

the current significantly at higher potentials. The slightly steep increase in anode potential from 0.5 to 0.7 V might be attributed to the limitation of diffusion.

Fig. 1 shows that RuO<sub>2</sub> gave monotoneous increase of the H<sub>2</sub>O reduction current below 0V. The onset potential almost reaches the redox potential (0V) of the cathode reaction, while that of Rh(OEP)/C is much higher than the redox potential (-0.4V) of anode reaction. RuO<sub>2</sub> is an efficient catalyst for H<sub>2</sub>O reduction, and high catalytic activity is responsible for the relatively small cathode overpotential in Fig. 6. However, the current density (Fig. 1) is much lower than that of Rh(OEP)/C (Fig. 3). This would be attributed to the low surface area of RuO<sub>2</sub>. Since the amorphous structure decreases selectivity toward H<sub>2</sub>O reduction (Fig. 2), the increase of surface area without destroying crystalline structure would be important to enhance the performance of the cell. Thus, the analysis revealed three points to be improved (i) the intrinsic activity of Rh(OEP), (ii) the surface area of RuO<sub>2</sub>, and (iii) the mass transfer of BH<sub>4</sub><sup>-</sup>.

#### 4. Conclusions

We found that RuO<sub>2</sub> has strong H<sub>2</sub>O-reducing activity without electro-oxidation or chemical decomposition of  $BH_4^-$ , in contrast to Pt catalysts. With this cathode catalyst and a Rh porphyrin anode catalyst, we developed a one-compartment electrochemical H<sub>2</sub> generator. H<sub>2</sub> generation from the cell could be successfully controlled by varying the electrode potential based on the selectivity of both the anode and cathode. The current density of the H<sub>2</sub> generator increased concomitant with the increase in the amount of H<sub>2</sub> generated. Anode and cathode potentials of the cell were also measured. The polarizations of both electrodes were explained by the catalytic properties of RuO<sub>2</sub> and a Rh porphyrin.

#### Acknowledgements

We thank researchers of the Advanced Fuel Cell Research Group and New Energy Carrier Research Group (Research Institute of Ubiquitous Energy Devices) for their fruitful discussion.

#### References

- [1] U.B. Demirci, J. Power Sources 172 (2007) 676-687.
- [2] C. Ponce de León, F.C. Walsh, D. Pletcher, D.J. Browning, J.B. Lakeman, J. Power Sources 155 (2006) 172–181.
- [3] A. Pozio, M. De Francesco, G. Monteleone, R. Oronzio, S. Galli, C. D'Angelo, M. Marrucci, Int. J. Hydrogen Energy 33 (2008) 51–56.
- [4] J.-H. Park, P. Shakkthivel, H.-J. Kim, M.-K. Han, J.-H. Jang, Y.-R. Kim, H.-S. Kim, Y.-G. Shul, Int. J. Hydrogen Energy 33 (2008) 1845–1852.
- [5] H.-B. Dai, Y. Liang, P. Wang, H.-M. Cheng, J. Power Sources 177 (2008) 17-23.
- [6] H. Senoh, Z. Siroma, N. Fujiwara, K. Yasuda, J. Power Sources 185 (2008) 1–5.
- [7] S. Yamazaki, H. Senoh, K. Yasuda, Electrochem. Commun. 11 (2009) 1109-1112.
- [8] A. Cornell, D. Simonsson, J. Electrochem. Soc. 140 (1993) 3123–3129.
- [9] C. Iwakura, N. Furukawa, M. Tanaka, Electrochim. Acta 37 (1992) 757-758.
- [10] A.C. Tavares, S. Trasatti, Electrochim. Acta 45 (2000) 4195-4202.
- [11] E. Veggetti, I.M. Kodintsev, S. Trasatti, J. Electroanal. Chem. 339 (1992) 255-268.
- [12] L.D. Burke, N.S. Naser, J. Appl. Electrochem. 35 (2005) 931–938.
- [13] J.P. Zheng, T.R. Jow, J. Electrochem. Soc. 142 (1995) L6-L8.
- [14] H. Ogoshi, J. Setsune, T. Omura, Z. Yoshida, J. Am. Chem. Soc. 97 (1975) 6461–6466.
- [15] S. Yamazaki, Y. Yamada, N. Fujiwara, T. Ioroi, Z. Siroma, H. Senoh, K. Yasuda, J. Electroanal. Chem. 602 (2007) 96–102.